首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   43篇
  2023年   2篇
  2022年   2篇
  2021年   16篇
  2020年   8篇
  2019年   14篇
  2018年   21篇
  2017年   14篇
  2016年   32篇
  2015年   33篇
  2014年   51篇
  2013年   41篇
  2012年   74篇
  2011年   68篇
  2010年   38篇
  2009年   25篇
  2008年   56篇
  2007年   52篇
  2006年   47篇
  2005年   36篇
  2004年   47篇
  2003年   21篇
  2002年   13篇
  2001年   12篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1965年   1篇
排序方式: 共有760条查询结果,搜索用时 31 毫秒
61.
G-protein coupled receptors (GPCRs) constitute the largest family of intercellular signaling molecules and are estimated to be the target of more than 50% of all modern drugs. As with most integral membrane proteins (IMPs), a major bottleneck in the structural and biochemical analysis of GPCRs is their expression by conventional expression systems. Cell-free (CF) expression provides a relatively new and powerful tool for obtaining preparative amounts of IMPs. However, in the case of GPCRs, insufficient homogeneity of the targeted protein is a problem as the in vitro expression is mainly done with detergents, in which aggregation and solubilization difficulties, as well as problems with proper folding of hydrophilic domains, are common. Here, we report that using CF expression with the help of a fructose-based polymer, NV10 polymer (NVoy), we obtained preparative amounts of homogeneous GPCRs from the three GPCR families. We demonstrate that two GPCR B family members, corticotrophin-releasing factor receptors 1 and 2β are not only solubilized in NVoy but also have functional ligand-binding characteristics with different agonists and antagonists in a detergent-free environment as well. Our findings open new possibilities for functional and structural studies of GPCRs and IMPs in general.  相似文献   
62.
Protein function annotation and rational drug discovery rely on the knowledge of binding sites for small organic compounds, and yet the quality of existing binding site predictors was never systematically evaluated. We assess predictions of ten representative geometry-, energy-, threading-, and consensus-based methods on a new benchmark data set that considers apo and holo protein structures with multiple binding sites for biologically relevant ligands. Statistical tests show that threading-based Findsite outperforms other predictors when its templates have high similarity with the input protein. However, Findsite is equivalent or inferior to some geometry-, energy-, and consensus-based methods when the similarity is lower. We demonstrate that geometry-, energy-, and consensus-based predictors benefit from the usage of holo structures and that the top four methods, Findsite, Q-SiteFinder, ConCavity, and MetaPocket, perform better for larger binding sites. Predictions from these four methods are complementary, and our simple meta-predictor improves over the best single predictor.  相似文献   
63.
64.
Chuvash polycythemia is a rare congenital form of polycythemia caused by homozygous R200W and H191D mutations in the VHL (von Hippel-Lindau) gene, whose gene product is the principal negative regulator of hypoxia-inducible factor. However, the molecular mechanisms underlying some of the hallmark abnormalities of Chuvash polycythemia, such as hypersensitivity to erythropoietin, are unclear. Here we show that VHL directly binds suppressor of cytokine signaling 1 (SOCS1) to form a heterodimeric E3 ligase that targets phosphorylated JAK2 (pJAK2) for ubiquitin-mediated destruction. In contrast, Chuvash polycythemia-associated VHL mutants have altered affinity for SOCS1 and do not engage with and degrade pJAK2. Systemic administration of a highly selective JAK2 inhibitor, TG101209, reversed the disease phenotype in Vhl(R200W/R200W) knock-in mice, an experimental model that recapitulates human Chuvash polycythemia. These results show that VHL is a SOCS1-cooperative negative regulator of JAK2 and provide biochemical and preclinical support for JAK2-targeted therapy in individuals with Chuvash polycythemia.  相似文献   
65.
The de novo design of protein-protein interfaces is a stringent test of our understanding of the principles underlying protein-protein interactions and would enable unique approaches to biological and medical challenges. Here we describe a motif-based method to computationally design protein-protein complexes with native-like interface composition and interaction density. Using this method we designed a pair of proteins, Prb and Pdar, that heterodimerize with a Kd of 130 nM, 1000-fold tighter than any previously designed de novo protein-protein complex. Directed evolution identified two point mutations that improve affinity to 180 pM. Crystal structures of an affinity-matured complex reveal binding is entirely through the designed interface residues. Surprisingly, in the in vitro evolved complex one of the partners is rotated 180° relative to the original design model, yet still maintains the central computationally designed hotspot interaction and preserves the character of many peripheral interactions. This work demonstrates that high-affinity protein interfaces can be created by designing complementary interaction surfaces on two noninteracting partners and underscores remaining challenges.  相似文献   
66.
Yeast two-hybrid (Y2H) and isothermal titration calorimetry (ITC) methods were used to further study the mutational effect of non-erythroid alpha spectrin (αII) at position 22 in tetramer formation with beta spectrin (βII). Four mutants, αII-V22D, V22F, V22M and V22W, were studied. For the Y2H system, we used plasmids pGBKT7, consisting of the cDNA of the first 359 residues at the N-terminal region of αII, and pGADT7, consisting of the cDNA of residues 1697–2145 at the C-terminal region of βII. Strain AH109 yeast cells were used for colony growth assays and strain Y187 was used for β-galactosidase activity assays. Y2H results showed that the C-terminal region of βII interacts with the N-terminal region of αII, either the wild type, or those with V22F, V22M or V22W mutations. The V22D mutant did not interact with βII. For ITC studies, we used recombinant proteins of the αII N-terminal fragment and of the erythroid beta spectrin (βI) C-terminal fragment; results showed that the Kd values for V22F were similar to those for the wild-type (about 7 nM), whereas the Kd values were about 35 nM for V22M and about 90 nM for V22W. We were not able to detect any binding for V22D with ITC methods. This study clearly demonstrates that the single mutation at position 22 of αII, a region critical to the function of nonerythroid α spectrin, may lead to a reduced level of spectrin tetramers and abnormal spectrin-based membrane skeleton. These abnormalities could cause abnormal neural activities in cells.  相似文献   
67.
68.
69.
The biological activity of lysosomotropic n-alkyl N,N-dimethylglycinates (DMG-n) was compared with that of a quaternary ammonium salt IM (methochloride of DMG-12). The activity of the glycinates appeared to be carbon chain length dependent and was similar at pH 6 and pH 8. Nutritional auxotrophy and respiratory deficiencies have no influence on DMG-n sensitivity. Both IM and DMG-n inhibit plasma membrane H+-ATPase activity while mitochondrial ATPase is relatively non-sensitive to glycinates. No cross-resistance to IM and DMG-n was observed.  相似文献   
70.
The third complementarity-determining regions (CDR3s) of antibodies and T cell receptors (TCRs) have been shown to play a major role in antigen binding and specificity. Consistent with this notion, we demonstrated previously that high-affinity, peptide-specific TCRs could be generated in vitro by mutations in the CDR3alpha region of the 2C TCR. In contrast, it has been argued that CDR1 and CDR2 are involved to a greater extent than CDR3s in the process of MHC restriction, due to their engagement of MHC helices. Based on this premise, we initiated the present study to explore whether higher affinity TCRs generated through mutations in these CDRs or other regions would lead to significant reductions in peptide specificity (i.e. the result of greater binding energy gained through interactions with major histocompatibility complex (MHC) helices). Yeast-display technology and flow sorting were used to select high-affinity TCRs from libraries of CDR mutants or random mutants. High-affinity TCRs with mutations in the first residue of the Valpha, CDR1, CDR2, or CDR3 were isolated. Unexpectedly, every TCR mutant, including those in CDR1 and CDR2, retained remarkable peptide specificity. Molecular modeling of various mutants suggested that such exquisite specificity may be due to: (1) enhanced electrostatic interactions with key peptide or MHC residues; or (2) stabilization of CDRs in specific conformations. The results indicate that the TCR is positioned so that virtually every CDR can contribute to the antigen-specificity of a T cell. The conserved diagonal docking of TCRs could thus orient each CDR loop to sense the peptide directly or indirectly through peptide-induced effects on the MHC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号